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Abstract—Open Source Software (OSS) projects start with an
initial vocabulary, often determined by the first generation of
developers. This vocabulary, embedded in code identifier names
and internal code comments, goes through multiple rounds of
change, influenced by the interrelated patterns of human (e.g.,
developers joining and departing) and system (e.g., maintenance
activities) interactions. Capturing the dynamics of this change
is crucial for understanding and synthesizing code changes over
time. However, existing code evolution analysis tools, available in
modern version control systems such as GitHub and SourceForge,
often overlook the linguistic aspects of code evolution. To bridge
this gap, in this paper, we propose to study code evolution in OSS
projects through the lens of developers’ language, also known as
code lexicon. Our analysis is conducted using 32 OSS projects
sampled from a broad range of application domains. Our results
show that different maintenance activities impact code lexicon
differently. These insights lay out a preliminary foundation for
modeling the linguistic history of OSS projects. In the long run,
this foundation will be utilized to provide support for basic
program comprehension tasks and help researchers gain new
insights into the complex interplay between linguistic change and
various system and human aspects of OSS development.

I. INTRODUCTION

Large OSS projects, maintained by large distributed devel-
oper teams, tend to have a rich history. Surveys of software
professionals revealed that software history is indispensable
for developers [1], [2]. Developers frequently ask questions
about the history of code to understand change rationale, track
bugs to their origin, or trace features to their older versions.
However, current version control systems (e.g. GitHub and
SourceForge) provide a single lens on history through com-
mits. Commits record changes per file and line along with
developers’ descriptions of these changes. However, a large
percentage of change information is rarely documented [3].
Such non-informative commits have been identified as one
of the main challenges facing OSS developers examining
software history [4], [5].

To address these limitations, in this Early Research Achieve-
ments (ERA) paper, we propose a new window on software
history. In particular, we analyze software evolution through
the lens of developers’ language [6], [7]. The vocabulary
of this language, embedded in code identifier names, makes
up around 70% of code lexicon [8]. Research on program
comprehension revealed that identifiers capture developers’
understanding of their system and its application domain at
the most primitive level. Such information can be crucial for
developers during maintenance sessions [8], [9], [10], [11],
[12], [13], [14], [15]. Comments were also found to play

a paramount role in arriving at a correct understanding of
the program, especially for newcomers who do not have an
adequate experience in the internals of the system [7], [16].

In the context of software, language evolution is typically
influenced by code evolution activities such as refactoring,
feature addition, and bug fixes. In our analysis, we hypothesize
that these different software evolution activities have different
impacts on the system’s vocabulary. Therefore, the ability to
capture and model the change in the system vocabulary is
expected to uncover the history of events that led to these
changes, revealing unique aspects of code evolution that are
typically overlooked by existing methods available in modern
version control systems, such as diff functions or Abstract
Syntax Trees (ASTs) [3], [4], [17], [18], [19].

Our analysis is conducted using 32 open source systems,
their revisions and metadata. Our objective is to explore
the specific impacts of different maintenance tasks on the
linguistic identity of OSS projects and provide a preliminary
evidence on the nature and magnitude of this impact.

II. FOUNDATION AND ANALYSIS

In this paper, we aim to investigate linguistic change in
OSS projects. To conduct our analysis, we adapt Petersen et
al.’s [20] statistical model of natural language evolution to OSS
projects’ code lexicon. According to this model, a survival-
of-the-fittest effect controls the way words emerge, grow, and
vanish throughout human history. Specifically, words are com-
peting actors in a system of finite resources. Words can gain or
lose momentum influenced by historical events (e.g., war), new
innovations (e.g., penicillin), and socio-technological advances
(e.g., Internet) [21], [22], [23]. Such information can be
used to investigate linguistic trends quantitatively and explore
questions deeply-rooted in cultural anthropology [20], [24].

In OSS development, the frequent maintenance actions
performed on the system as well as the highly dynamic nature
of developer teams, apply similar evolutionary pressures on
the usage and survival capacity of code lexicon words [25].
To understand and quantify the magnitude of this change,
we investigate the impact of different software maintenance
activities on OSS code lexicon. In general, we identify three
generic categories of such activities:

• Bug fixes: these activities include corrective maintenance
requests, mainly targeting bugs in the system, or errors
in the program’s logic.



• Feature additions: these activities typically include re-
quests for new major, or minor, functionality to be added
to the system.

• Improvements: improvement activities typically include
perfective, adaptive, and preventive maintenance requests,
focusing on improving existing code by, for instance, en-
hancing the efficiency of underlying algorithms, improv-
ing code structure by refactoring, or improving interfaces.

Resolving the relationship between these different activities
and code change will provide a fundamental understanding of
the dynamics of linguistic change in OSS projects and bridge a
very important gap in code evolution research. In what follows,
we describe our data collection and analysis process in greater
detail.

A. Data Collection

To understand the relation between maintenance activi-
ties and linguistic change, we selected 32 projects from
GitHub, covering four programming languages: Java, C#,
Python, and JavaScript. The criteria for selecting the projects
were a) the project should have a long history, or a
large number of releases, b) the project should be rela-
tively popular, which can be quantified through the num-
ber of stars the project received on GitHub [26], and c)
the maintenance activities for each release of the project
should be explicitly classified by project maintainers. For
example, the Java project NewPipe in our dataset marks
feature additions as New (e.g., New: Basic MediaCCC
Support), bugs as Fixed (e.g., Fix random popup
player crash #2133), and other perfective tasks as
Improvements (e.g., Improvement: clearing watch
history using options menu). This criterion was en-
forced to ensure the validity of the results. Specifically, it can
be challenging to accurately classify the type of maintenance
activity if the issues related to the activity are not explicitly
defined [27], [28].

To collect our data, we used the GitHub API [29] to
download the top starred Java, C#, Python, and JavaScript
projects (8 x 4) along with their corresponding public releases.
This API provides a convenient way for directly downloading
project data (e.g., releases, commits, issues, contributors),
thus enabling access to all forms of events instigated by
code evolution activities. Selecting a smaller set of well-
maintained projects helps to mitigate the data validity threats
often associated with running experimentation on large-scale
datasets of OSS projects [27]. The descriptive statistics of our
32 selected projects are provided in Table I.

To extract source code lexicon from our projects, we used
regular expressions. Code lexicon consists of all words used in
the source code except for the programming language specific
keywords. Regular expressions treat code artifacts as raw text
files. Therefore, the code itself does not have to compile,
or even to be complete, for regular expressions to work.
After identifiers are extracted, we further split any compound
words into their constituent words based on camel-casing (e.g.,
userID is split into User and ID) or any special characters

(e.g. underscore) typically used in code naming conventions
(e.g., file_type is split into file and type). After atomic
words of code identifiers are extracted, stemming is applied to
reduce words to their morphological roots [30]. The accuracy
of our indexing engine (%97) has been independently verified
in our previous work [31].

B. Analysis and Results

The objective of our analysis is to examine whether lin-
guistic change can be predicted by the different maintenance
activities performed on the project. To expose such effect, we
use Granger Causality, an econometric technique that is used
to test if one variable precedes another in a stationary time-
series [32]. Precisely, given the variables A and B, we test to
see if the values of A and the previous history of B predict the
values of B better, than the history of B alone. The assumption
behind using this test is that the different releases of the system
can be represented as points in a time series.

One of the parameters of Granger Causality is lag. The
operationalization of lag depends on the problem, or the
context. In our case, a lag of 1 represents the value of linguistic
change for release i and maintenance activities submitted in
the release notes for the same release i. Lag of 2 measures
the correlation between linguistic change of i-th release and
maintenance activities submitted for i-1 release, and so on.
Usually, in a time series analysis, several lag values are tested.
In our analysis, we measure lag of 1 and 2 for short term
impact and lag of 5 to capture long term impact.

To quantify the magnitude of linguistic shift in OSS
projects, we rely on Petersen et al.’s word-frequency
model [20]. According to this model, the linguistic change
rate (∆λi,j) between two releases ri and rj of the system can
be calculated as the number of different words (words birth
and death) between the two releases divided by the number
of unique words in both releases. The average λs of a system
s which has n releases can be calculated as the average λi,j
between each two consecutive releases in the time series of
the system:

∆λi,j = 1− |ri ∩ rj |
|ri ∪ rj |

, λs(t) =
1

n

n−1∑
i=1

(∆λi,i+1) (1)

This model of change is more sensitive to change than
topic modeling techniques such as LDA [33]. Specifically,
the operational complexity as well as the inherent sparsity
of the textual information of code often leads to generating
incoherent topics that can hardly describe change [34], [35],
[36], [37]. As an example of our analysis, Fig. 1 shows
linguistic change at different releases of Synapse—an open
source research collaborative platform—in comparison to the
number of bug fixes, feature additions, and improvements for
each release.

The results of our Granger Causality analysis are presented
in Table II. In general, the results show that feature additions
were the most significant predictors of linguistic change,
followed by improvements and bug fixes, which were able
to significantly predict linguistic change in a smaller number



TABLE I: Descriptive statistics for our sample of 32 projects, including the average number of releases, bug fixes, feature
additions, and improvements for the projects sampled from each programming language.

Language LOC Releases Bug fixes Feature Additions Improvements
Java 8.10M 61 270 186 306
C# 7.95M 80 272 197 123
Python 14.39M 87 308 145 291
JavaScript 14.89M 117 588 193 209
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Fig. 1: Linguistic Change (Eq. 1) for Synapse, compared against the number of bug fixes, feature additions, and improvements

of projects. We also notice the differences between different
programming languages, for instance, bug fixes significantly
predicted linguistic change for 5 out of the 8 C# projects. For
Python projects, feature additions and improvements caused
the most disturbance in code lexicon. In contrast, JavaScript
projects showed significantly less linguistic sensitivity to fea-
ture additions and improvements. Furthermore, for the major-
ity of the projects where the lag of 1 is significant, the lags
of 2 and 5 are also significant, which suggests that bug fixes,
feature additions, and improvements have a long-term impact
on linguistic change, not limited by a single release.

Different maintenance activities can predict linguis-
tic change at different levels of accuracy. Fea-
ture additions are the best predictors of change.
However, the magnitude of the effect seems to be
influenced by the programming language.

III. CONCLUSION, IMPACT, AND NEXT STEPS

In this paper, we conducted a preliminary analysis, using a
frequency-based statistical model of language evolution [20],
to study linguistic change in OSS projects. Our analysis
revealed that different types of software maintenance activities
have different impacts on code lexicon. Overall, the effect of
maintenance activities is non-uniform. This effect even varies
among programming languages, indicating that different main-
tenance activities might have different linguistic footprints.

In terms of practical impact, resolving the micro relations
between change in code lexicon and the different types of
maintenance activities can help developers to diagnose and
reverse the symptoms of code aging, make informed design
and maintenance decisions, and ensure a sustainable and stable
delivery process. For instance, capturing the linguistic foot-
prints of maintenance activities can help developers to pinpoint
the specific activities responsible for Linguistic Antipatterns
(LAs), or inconsistencies among the naming of a code entity.
LAs were found to be a main symptom of code aging. Such
linguistic anomalies, often introduced during maintenance
sessions, lead to a steeper learning curve, misunderstandings,
and eventually bug-prone code in the project [38], [39], [40].
Therefore, this type of analysis can be very important for the
stability of OSS projects, given that OSS environments often
lack an organizational structure that enforces the conformance
to a specific naming convention [6].

Our work can also have practical impacts on OSS projects
sustainability. For instance, creativity is often defined as a
function of new features proposed and implemented [41],
[42]. Our analysis showed that new features came with new
vocabulary, thus more linguistic change. However, higher
levels of linguistic change might destabilize the project. In
OSS environments, project stability is a necessity for quality
control [43]. Therefore, resolving the interdependency rela-
tions between linguistic change, creativity, and quality can help
to define the levels of linguistic change that can be optimal for
keeping the system’s quality under control, at the same time,
do not restrain OSS developers’ creativity.



TABLE II: Granger Causality results for each individual project in our analysis. The variables provided are predictors of
Linguistic Change. p-values are indicated: *p<0.05; †p < 0.01; ‡p < 0.001. Empty cells indicate that no change of that
specific type was reported in the project.

Bugfix Feature addition Improvement

Lag 1 2 5 1 2 5 1 2 5

C#

aspboilerplatenet 0.912 0.952 0.970 0.190 0.126 0.429 0.348 0.475 0.703

cake 0.000‡ 0.000‡ 0.003† 0.000‡ 0.000‡ 0.000† 0.000‡ 0.000‡ 0.002†

optikey 0.000‡ 0.002† 0.000‡ 0.041∗ 0.038∗ 0.296

ckan 0.000‡ 0.000‡ 0.003† 0.000‡ 0.001† 0.057 0.024† 0.070 0.218

azure-pipelines 0.275 0.503 0.434 0.002† 0.014∗ 0.242 0.002† 0.011∗ 0.116

VisualStudio 0.000‡ 0.000‡ 0.002† 0.005† 0.013∗ 0.218 0.079 0.054 0.2248

elasticnet 0.5067 0.7769 0.5209 0.4518 0.7887 0.6495

hearthstone 0.000‡ 0.000‡ 0.012† 0.000‡ 0.000‡ 0.000‡

Java

flym 0.000‡ 0.000‡ 0.006† 0.000‡ 0.000‡ 0.001† 0.000‡ 0.000‡ 0.000‡

RxJava 0.966 0.941 0.878 0.795 0.956 0.826

mongo-java-driver 0.000‡ 0.000‡ 0.000‡ 0.000‡ 0.000‡ 0.000‡ 0.000‡ 0.000‡ 0.000‡

qksms 0.199 0.315 0.705 0.009† 0.034∗ 0.020∗ 0.356 0.228 0.621

checkstyle 0.001‡ 0.012∗ 0.009† 0.000‡ 0.000‡ 0.000‡

filedownloader 0.917 0.7102 0.809 0.000‡ 0.002† 0.002† 0.000‡ 0.000‡ 0.000‡

newpipe 0.784 0.489 0.452 0.000‡ 0.000‡ 0.004† 0.801 0.025∗ 0.046∗

android-catcher 0.001† 0.002† 0.002† 0.000‡ 0.000‡ 0.000‡ 0.000‡ 0.000‡ 0.000‡

Python

synapse 0.000‡ 0.000‡ 0.000‡ 0.000‡ 0.000‡ 0.000‡ 0.000‡ 0.000‡ 0.000‡

erpnext 0.267 0.211 0.575 0.000‡ 0.000‡ 0.000‡ 0.000‡ 0.000‡ 0.000‡

tautulli 0.935 0.942 0.662 0.000‡ 0.000‡ 0.000‡ 0.000‡ 0.000‡ 0.001†

kinto 0.501 0.138 0.012∗ 0.000‡ 0.000‡ 0.000‡ 0.000‡ 0.000‡ 0.000‡

aiohttp 0.000‡ 0.000‡ 0.022∗ 0.000‡ 0.000‡ 0.000‡ 0.000‡ 0.000‡ 0.000‡

netbox 0.662 0.756 0.721 0.000‡ 0.000‡ 0.000‡ 0.000‡ 0.000‡ 0.000‡

h 0.164 0.417 0.209 0.000‡ 0.002† 0.117 0.012∗ 0.051 0.056

conan 0.000‡ 0.000‡ 0.000‡ 0.000‡ 0.000‡ 0.000‡ 0.000‡ 0.000‡ 0.000‡

JavaScript

RocketChat 0.015∗ 0.031† 0.098 0.001† 0.005† 0.008† 0.970 0.891 0.938

ghost 0.136 0.314 0.278 0.000‡ 0.000‡ 0.000‡ 0.692 0.872 0.184

habitica 0.677 0.904 0.918 0.352 0.601 0.709 0.474 0.764 0.510

vuejs 0.818 0.318 0.776 0.519 0.859 0.639 0.481 0.628 0.942

redux-form 0.358 0.495 0.967 0.998 0.968 0.769

semantic-ui 0.000‡ 0.000‡ 0.001† 0.626 0.764 0.947 0.000‡ 0.000‡ 0.000‡

vuetify 0.000‡ 0.000‡ 0.010∗ 0.000‡ 0.000‡ 0.000‡ 0.000‡ 0.000‡ 0.001†

stylelint 0.002† 0.010∗ 0.001‡ 0.000‡ 0.000‡ 0.000‡

In terms of theoretical impact, our preliminary work in this
paper lays out a theoretical foundation for describing and mod-
eling the evolution of developers’ language in OSS projects.
Our aim is to provide a fundamental understating of how such
language emerges and becomes shaped by different models of
language selection. According to Croft’s [44], understanding
language change at a micro- and macro-levels provides a basis
for understanding the generation and propagation of language
structures, thus provides a description of how a language
system may emerge and continue to change over time. The
overarching goal in this paper is to advance the state-of-the-art
in theoretical software engineering research by articulating a

unified theory of linguistic change in OSS projects. According
to Sjøberg et al., in order for software engineering to develop
into a mature field of science, theory-building should become
an integral part of its research and practice [45]. In the long
run, a well-defined theory of code lexicon evolution will serve
as a core asset that researchers can utilize to quantitatively
investigate linguistic trends in OSS and uncover best practices
for maintaining successful OSS projects and building vibrant
OSS communities.
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